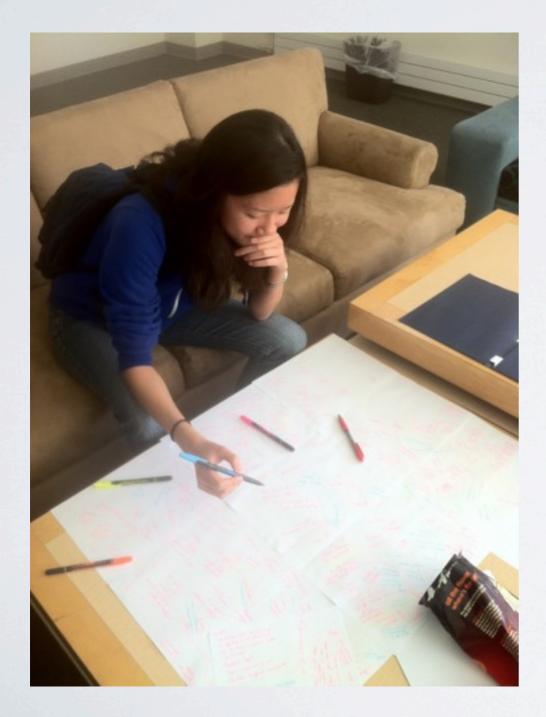
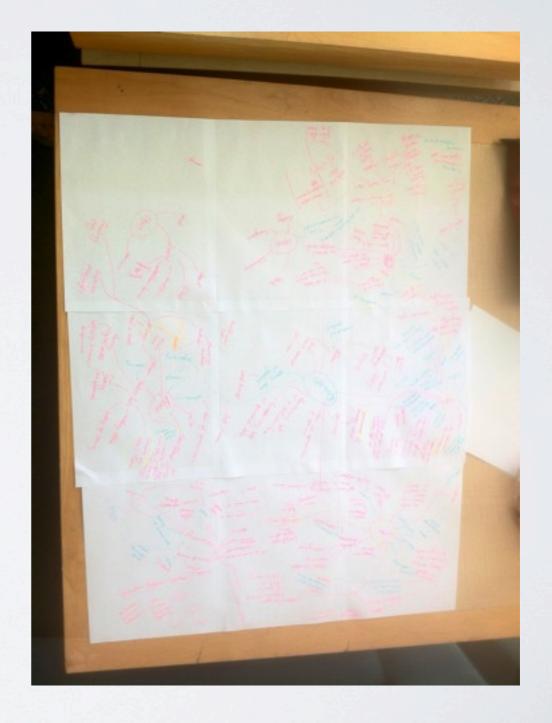
EXPLORING THE DESIGN OF IN-AIR GESTURES

I nteractive

6 estural

0 perator


(Karen Ho, Hanley Weng)
Cogs 160
Sprint 2012


OUTLINE

- First Iteration
- Second Iteration
- Third Iteration
- Conclusions

I. INITIAL CONCEPT

· remote multimodal gestures in the home environment

I. MOTIVATIONS FOR INITIAL CONCEPT

- remote
 - physically inaccessible fixtures, bridging the gap of remoteaccess
- in-air gestures, etc.
 - alternative to existing interfaces
- home environment
 - daily life, safety, privacy

I. INITIAL CONTEXTUAL INTERVIEWS

- Questions
 - Preferred modes and contexts of remote interaction with fixtures. Open ended towards end.
- Results
 - · Unimodal preference for voice or hand gestures.

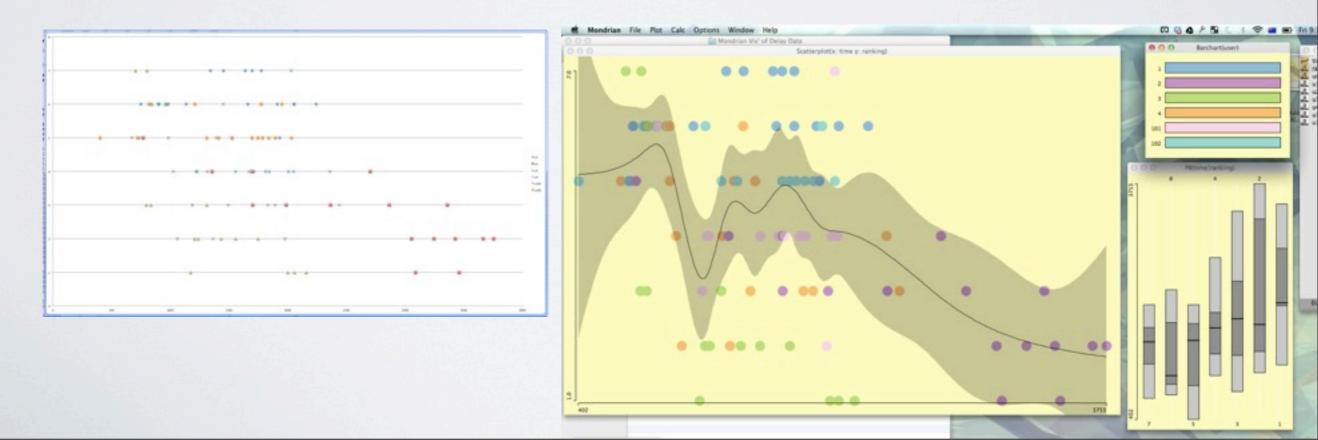
2. REFINED CONCEPT

- Focus on in-air gestures.
- System
 - Microsoft Kinect.
 - Feedback = Color change.

2.TESTING

- users:
 - 6, right-handed, college students of varying disciplines.
- Questions:
 - user satisfaction of gestures, and of feedback delay.

1	2	3	4
0	0	0	
1	2	3	4
0	0	0	
1	2	3	4
0	\odot	\odot	
1	2	3	4
	1 0	1 2 0 0	1 2 3 1 2 3 1 2 3 1 2 3 0 0 0


Set 2

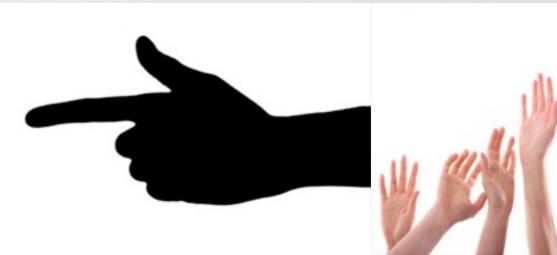
2. i.

.

2. TESTING RESULTS

- preference for one-handed gestures, less arm movement, shorter execution time, and sound was not a factor.
- · A balance of user-system confidence and physical effort.
- Feedback delay:

3. CURRENT CONCEPT VIDEO


COGS 160

Remote In-Air Gestures in the Home Environment

Spring 2012

3. RE-DESIGN

- System Changes
 - More context (added a lamp)
 - continuous feedback (fading in/out)
 - Refined gesture set (small, varied durations)
- Technical System Design / User Test Re-Design
 - OSC Interface, iPad data recording, Depth Cameras, Arduino
 - Slider-dependent user input over surveys.
 - Anthropomorphic delimiters.

3. USERTESTS

- Questions
 - User preference of fade time across different small gestures.
- Results
 - CONTEXT MATTERS.
 - Preferred fade-in duration follows gesture duration, personality/mood/ intention of the user.
 - Short "classy" fade-ins (~500-1000ms) actually preferred over instantaneous fades.

4. EVALUATION

- Preferred Gestures require minimal physical effort, whilst a strong system-user confidence is maintained.
- Feedback response time is dependent on context and other factors.
- Preferred feedback transition times correlate with preferred gesture duration.

4. FUTURE WORK

- There are many factors to be considered in the design of finegestures in home interactions. Beyond feedback response time, e.g. functionality, history, context of fixtures).
- An anthropomorphic system (gaze & finger tracking) and neuroscience-derived computational systems (place and grid cells, synaptic plasticity, image compression (abstracting data from detailed systems to train efficient systems).
- · Easier deployment for technological probing.